Evaluation of Frost Damage and Pod Set in Faba Bean (Vicia faba L.) under Field Conditions

Author:

Alharbi Najeeb H.ORCID,Alghamdi Salem S.ORCID,Migdadi Hussein M.ORCID,El-Harty Ehab H.ORCID,Adhikari Kedar N.ORCID

Abstract

Frost is one factor that causes extensive yield losses globally. A study was conducted to evaluate frost damage under field conditions and assess the genetic variation of flowers converting into pods. Diverse faba bean genotypes were evaluated under four growing seasons in a randomized complete block design: three at the University of Sydney, Narrabri, Australia (2014–2016) with three sowing dates, and one at the Agricultural Research Station, Dirab, Riyadh, Saudi Arabia (2016/2017) in one sowing. Visual methods were used to estimate frost damage and record the development of pods. Radiation frost in 2014 (Narrabri) damaged lower pods, while advection frost in 2016/2017 (Dirab) damaged upper pods. The radiation frost formed immediately above the ground; therefore, flowers and pods of taller plants minimized the damage because of their long distance from the ground. The earliest (mid-April) and middle sowing (7 May) suffered more by frost, while a delay in sowing (last week in May) led to frost escape or minor damage. The genotypes IX474/4-3 and 11NF010a-2 showed low sensitivity to frost at the vegetative and reproductive stages. Flowers developed at the beginning of flowering had a faster and higher pod formation rate (41–43%) than those formed later and contributed more to yields. Therefore, a severe frost at the beginning of flowering can cause a significant yield loss as these flowers are the most productive. The frost-tolerant genotypes, and faster and higher pod forming rates, identified in this study can be exploited to breed better varieties in the future.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3