Nitrogen Fertilization Modified the Responses of Schima superba Seedlings to Elevated CO2 in Subtropical China

Author:

Chen Zhan,Ye Siyuan,Cao Jixin,Shang He

Abstract

There are very few studies about the effects of relatively higher CO2 concentration (e.g., 1000 μmol·mol−1) or plus N fertilization on woody plants. In this study, Schima superba seedings were exposed to ambient or eCO2 (550, 750, and 1000 μmol·mol−1) and N fertilization (0 and 10 g·m−2·yr−1, hereafter: low N, high N, respectively) for one growth season to explore the potential responses in a subtropical site with low soil N availability. N fertilization strongly increased leaf mass-based N by 118.38%, 116.68%, 106.78%, and 138.95%, respectively, in different CO2 treatments and decreased starch, with a half reduction in leaf C:N ratio. Leaf N was significantly decreased by eCO2 in both low N and high N treatments, and N fertilization stimulated the decrease of leaf N and mitigated the increase of leaf C:N by eCO2. In low N treatments, photosynthetic rate (Pn) was maximized at 733 μmol·mol−1 CO2 in August and September, while, in high N treatments, Pn was continuously increased with elevation of CO2. N fertilization significantly increased plant biomass especially at highly elevated CO2, although no response of biomass to eCO2 alone. These findings indicated that N fertilization would modify the response of S. superba to eCO2.

Funder

the National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3