Dynamic Responses of Ascorbate Pool and Metabolism in Lettuce to Light Intensity at Night Time under Continuous Light Provided by Red and Blue LEDs

Author:

Wen YuanORCID,Zha Lingyan,Liu WenkeORCID

Abstract

To understand the dynamic changes of hydroponic lettuce growth, ascorbate (AsA) pool and metabolism under two different dark period light intensities (LL, 20 μmol·m−2·s−1; CL, 200 μmol·m−2·s−1) of continuous light and normal light (NL, 0 μmol·m−2·s−1) provided by red (R) and blue (B) LEDs, the chlorophyll fluorescence parameters, ascorbate pool size, AsA metabolism-related enzyme activities, and H2O2 contents of lettuce were measured at 0, 8, 16, 24, 32, 40, 48, 56, 64, and 72 h after light treatment and the lettuce growth parameters were measured on the 9th day after light treatment. The results showed that compared with the NL, CL treatment for 9 days significantly increased the biomass, dry matter content, and specific leaf weight of lettuce, but had no significant effect on the leaf area and root-to-shoot ratio; LL had no significant effect on lettuce biomass, but it would reduce the root-shoot ratio. Compared with the NL, the AsA content of CL increased significantly within 8 h after light treatment (at the end of first dark period), and then maintained at a relatively stable level with a slight increase; there was no significant difference in AsA contents between NL and LL showing the same circadian rhythm characteristics. Overall, the activities of L-galactono-1,4-lactone dehydrogenase (GalLDH), ascorbate peroxidase(APX), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) under CL were the highest among the three treatments, and the differences with the other two treatments reached significant levels at several time points; there was almost no significant difference in the activities of GalLDH, APX, MDHAR, and GR between NL and LL; there was no significant difference in the activities of dehydroascorbate reductase (DHAR) under different treatments. Compared with the NL, CL caused a sharp decrease of PSⅡ maximal photochemical efficiency (Fv/Fm) in lettuce within 0–8 h after treatment, which then stabilized at a relatively stable level; the Fv/Fm value under the LL was almost the same as the NL. Except for 32 h, the H2O2 content of lettuce under CL was the highest among the three treatments during the entire experimental period, and was significantly higher than that of NL at several time points; the H2O2 content of LL was almost the same as NL. In summary, lettuce biomass, AsA contents, AsA metabolism-related enzyme activities, chlorophyll fluorescence parameters, and H2O2 contents were regulated by the dark period light intensities of continuous light rather than continuous light signals.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3