Production and Characterization of Sumac PlantCrystals: Influence of High-Pressure Homogenization on Antioxidant Activity of Sumac (Rhus coriaria L.)

Author:

Abraham Abraham M.,Quintero Camilo,Carrillo-Hormaza Luis,Osorio EdisonORCID,Keck Cornelia M.ORCID

Abstract

Oxidative stress diseases are usually treated or prevented by using antioxidants from natural or artificial sources. However, as a sustainable source of phytochemicals, plants got a renewed interest in obtaining their active agents using green extraction technologies, i.e., sustainable extraction techniques that reduce energy consumption, use renewable sources and result in less post-extraction wastes. The high-pressure homogenization (HPH) technique was introduced into the food industry since it was invented in 1900 to homogenize milk and later to produce fruit juices with a longer shelf-life without preservatives. Recently, HPH was introduced as an eco-friendly method to nanomill plants for improved extraction efficacy without using organic solvents. In this study, sumac was used as an antioxidants-rich spice model to investigate the effects of HPH on its antioxidant capacity (AOC). Sumac was rendered into PlantCrystals by using HPH. Particle size characterization proved the presence of submicron-sized particles (about 750 nm). Thus, HPH was able to produce sumac PlantCrystals and increased the AOC of bulk sumac by more than 650% according to the ORAC (oxygen radical absorbance capacity) assay. The polyphenol and flavonoid contents showed higher values after HPH. Interestingly, the DPPH (1,1-diphenyl-2-picrylhydrazyl) assay also showed a well improved AOC (similar to ascorbic acid) after HPH. In fact, in this study, the PlantCrystal-technology was demonstrated to cause an efficient cell rupture of the sumac plant cells. This caused an efficient release of antioxidants and resulted in sumac PlantCrystals with a 6.5-fold higher antioxidant capacity when compared to non-processed sumac bulk material.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3