Unexpected Vulnerability to High Temperature in the Mediterranean Alpine Shrub Erysimum scoparium (Brouss. ex Willd.) Wettst

Author:

González-Rodríguez Águeda María,Pérez-Martín Eva María,Brito Patricia,Fernández-Marín BeatrizORCID

Abstract

Current understanding of the effects of extreme temperature on alpine evergreens is very limited for ecosystems under Mediterranean climate (characterised by a drought period in summer), despite being exceptionally biodiverse systems and highly vulnerable under a global change scenario. We thus assessed (i) seasonal change and (ii) effect of ontogeny (young vs. mature leaves) on thermal sensitivity of Erysimum scoparium, a keystone evergreen of Teide mountain (Canary Islands). Mature leaves were comparatively much more vulnerable to moderately high leaf-temperature (≥+40 and <+50 °C) than other alpine species. Lowest LT50 occurred in autumn (−9.0 ± 1.6 °C as estimated with Rfd, and −12.9 ± 1.5 °C with Fv/Fm). Remarkably, young leaves showed stronger freezing tolerance than mature leaves in spring (LT50 −10.3 ± 2.1 °C vs. −5.6 ± 0.9 °C in mature leaves, as estimated with Rfd). Our data support the use of Rfd as a sensitive parameter to diagnose temperature-related damage in the leaves of mountain plants. On a global change scenario, E. scoparium appears as a well-prepared species for late-frost events, however rather vulnerable to moderately high temperatures.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference58 articles.

1. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems;Körner,2003

2. Where, why and how? Explaining the low-temperature range limits of temperate tree species

3. Climate-induced shifts in leaf unfolding and frost risk of European trees and shrubs

4. Photoprotective mechanisms in the genus Quercus in response to winter cold and summer drought;García-Plazola,2017

5. Heat tolerance of early developmental stages of glacier foreland species in the growth chamber and in the field

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3