Cytotoxic Effects of Phytomediated Silver and Gold Nanoparticles Synthesised from Rooibos (Aspalathus linearis), and Aspalathin

Author:

Akinfenwa Akeem O.ORCID,Abdul Naeem S.,Docrat Fathima T.,Marnewick Jeanine L.ORCID,Luckay Robbie C.,Hussein Ahmed A.ORCID

Abstract

The green chemistry approach has continuously been applied for the synthesis of functional nanomaterials to reduce waste, environmental hazards, and the use of toxic chemicals among other reasons. Bioactive natural compounds have been found great potential in this regard and are used to improve the stability, activity, and biodistribution of metal nanoparticles (MNPs). Aspalathin (ASP) from Aspalathus linearis (rooibos) has a well-defined pharmacological profile and functional groups capable of both reducing and capping agents in the synthesis of metallic nanoparticles (NP). This study provides the first report of the phytomediated synthesis of gold and silver nanoparticles (AuNPs/AgNPs) via ASP and the green rooibos (GR) extract. The study demonstrated a green chemistry approach to the biosynthesis of nanoparticles of GR-AuNPs, ASP-AuNPs, GR-AgNPs, and ASP-AgNPs. The results showed that GR and ASP could act both as reducing and stabilising agents in the formation of crystalline, with different shapes and dispersity of NPs in the ranges of 1.6–6.7 nm for AgNPs and 7.5–12.5 nm for the AuNPs. However, the ASP NPs were less stable in selected biogenic media compared to GR NPs and were later stabilised with polyethene glycol. The cytotoxicity studies showed that GR-AgNPs were the most cytotoxic against SH-SY5Y and HepG2 with IC50 108.8 and 183.4 μg/mL, respectively. The cellular uptake analysis showed a high uptake of AuNPs and indicated that AgNPs of rooibos at a lower dose (1.3–1.5 μg/mL) is favourable for its anticancer potential. This study is a contribution to plant-mediated metallic nanoparticles using a pure single compound that can be further developed for targeted drug delivery for cancer cells treatments in the coming years.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3