Interaction Effect of EDTA, Salinity, and Oxide Nanoparticles on Alga Chlamydomonas reinhardtii and Chlamydomonas euryale

Author:

Canuel Emilie,Vaz CleitonORCID,Matias William Gerson,Dewez DavidORCID

Abstract

The interaction effects of organic ligand ethylene diamine tetra-acetic acid (EDTA) and oxide nanoparticles (magnetite Fe3O4-NPs and copper CuO-NPs) were investigated during a 72 h period on two green algal species—Chlamydomonas reinhardtii under freshwater conditions and Chlamydomonas euryale under saltwater conditions. Fe3O4-NPs had larger agglomerates and very low solubility. CuO-NPs, having smaller agglomerates and higher solubility, were more toxic than Fe3O4-NPs in freshwater conditions for similar mass-based concentrations, especially at 72 h under 100 mg L−1. Furthermore, the effect of EDTA increased nanoparticle solubility, and the salinity caused a decrease in their solubility. Our results on C. euryale showed that the increase in salinity to 32 g L−1 caused the formation of larger nanoparticle agglomerates, leading to a decrease in the toxicity impact on algal cells. In addition, EDTA treatments induced a toxicity effect on both freshwater and saltwater Chlamydomonas species, by altering the nutrient uptake of algal cells. However, C. euryale was more resistant to EDTA toxicity than C. reinhardtii. Moreover, nanoparticle treatments caused a reduction in EDTA toxicity, especially for CuO-NPs. Therefore, the toxicity impact caused by these environmental factors should be considered in risk assessment for metallic nanoparticles.

Funder

Natural Sciences and Engineering Research Council

RAQ-FQRNT

Fonds de Recherche du Québec - Nature et Technologies

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3