Exogenous Application of Zinc to Mitigate the Salt Stress in Vigna radiata (L.) Wilczek—Evaluation of Physiological and Biochemical Processes

Author:

Al-Zahrani Hassan S.,Alharby Hesham F.,Hakeem Khalid RehmanORCID,Rehman Reiaz Ul

Abstract

Salt stress adversely affects the growth and productivity of crops. However, reports suggest that the application of various micronutrients could help the plant to cope with this stress. Hence, the objective of the study was to examine the effect of exogenous application of Zinc (Zn) on salt tolerance in Vigna radiata (L.) Wilczek (mungbean). Mungbean is considered to be an economically important crop and possess a strategic position in Southeast Asian countries for sustainable crop production. It is rich in quality proteins, minerals and vitamins. Three weeks old grown seedlings were subjected to NaCl (150 mM and 200 mM) alone or with Zn (250 µM). After 21 days of treatment, plants were harvested for investigating morphological, physiological and biochemical changes. We found that the Zn application mitigates the negative effect upon plant growth to a variable extent. This may be attributed to the increased shoot and root length, improved chlorophyll and carotenoid contents, enhanced total soluble sugar (TSS), total soluble protein (TSP) and proline accumulation, decreased H2O2 content and increased enzymatic antioxidant activities. Zn’s application improved the performance of the enzymes such as phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) of the secondary metabolism, which resulted in the improvement of total phenol and flavonoids. The antioxidant activities such as 1,1diphenyl 2-picryl hydrazine (DPPH) and ferrous reducing antioxidant power assay (FRAP) of the plants also showed improved results in their salt only treatments. Furthermore, hydrogen peroxide (H2O2) and superoxide radical (SOD) scavenging activity were also improved upon the application of 250 µM zinc. Thus, Zn application in low doses offers promising potential for recovering plants suffering from salinity stress. In conclusion, we assume that zinc application improved salt tolerance in mungbean through the improvement of various physiological and photochemical processes which could prove to be useful in nutrient mediated management for crop improvement.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference137 articles.

1. Mechanisms of Salinity Tolerance

2. Salinity tolerance of crops – what is the cost?

3. FAO Cereal Supply and Demand Brief,2015

4. Salty soils and their development in Tunisia;Hachicha;Sci. Glob. Chang. Drought,2007

5. Gas exchange of barley seedlings growing under salinity stress;Kalaji;Photosynthetica,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3