Chitosan Nanoparticles Inactivate Alfalfa Mosaic Virus Replication and Boost Innate Immunity in Nicotiana glutinosa Plants

Author:

Abdelkhalek AhmedORCID,Qari Sameer H.ORCID,Abu-Saied Mohamed Abd Al-Raheem,Khalil Abdallah Mohamed,Younes Hosny A.,Nehela YasserORCID,Behiry Said I.ORCID

Abstract

Plant viral infection is one of the most severe issues in food security globally, resulting in considerable crop production losses. Chitosan is a well-known biocontrol agent against a variety of plant infections. However, research on combatting viral infections is still in its early stages. The current study investigated the antiviral activities (protective, curative, and inactivation) of the prepared chitosan/dextran nanoparticles (CDNPs, 100 µg mL−1) on Nicotiana glutinosa plants. Scanning electron microscope (SEM) and dynamic light scattering analysis revealed that the synthesized CDNPs had a uniform, regular sphere shapes ranging from 20 to 160 nm in diameter, with an average diameter of 91.68 nm. The inactivation treatment was the most effective treatment, which resulted in a 100% reduction in the alfalfa mosaic virus (AMV, Acc# OK413670) accumulation level. On the other hand, the foliar application of CDNPs decreased disease severity and significantly reduced viral accumulation levels by 70.43% and 61.65% in protective and curative treatments, respectively, under greenhouse conditions. Additionally, the induction of systemic acquired resistance, increasing total carbohydrates and total phenolic contents, as well as triggering the transcriptional levels of peroxidase, pathogen-related protein-1, and phenylalanine ammonia-lyase were observed. In light of the results, we propose that the potential application of CDNPs could be an eco-friendly approach to enhance yield and a more effective therapeutic elicitor for disease management in plants upon induction of defense systems.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3