Phosphite Reduces the Predation Impact of Poterioochromonas malhamensis on Cyanobacterial Culture

Author:

Toda Narumi,Murakami Hiroki,Kanbara Akihiro,Kuroda Akio,Hirota RyuichiORCID

Abstract

Contamination by the predatory zooplankton Poterioochromonas malhamensis is one of the major threats that causes catastrophic damage to commercial-scale microalgal cultivation. However, knowledge of how to manage predator contamination is limited. Previously, we established a phosphite (Pt)-based culture system by engineering Synechococcus elongatus, which exerted a competitive growth advantage against microbial contaminants that compete with phosphate source. Here, we examined whether Pt is effective in suppressing predator-type contamination. Co-culture experiment of Synechococcus with isolated P. malhamensis revealed that, although an addition of Pt at low concentrations up to 2.0 mM was not effective, increased dosage of Pt (~20 mM) resulted in the reduced grazing impact of P. malhamensis. By using unsterilized raw environmental water collected from rivers or ponds, we found that the suppression effect of Pt was dependent on the type of environmental water used. Eukaryotic microbial community analysis of the cultures using environmental water samples revealed that Paraphysomonas, a colorless Chrysophyceae, emerged and dominated under high-Pt conditions, suggesting that Paraphysomonas is insensitive to Pt compared to P. malhamensis. These findings may provide a clue for developing a strategy to reduce the impact of grazer contamination in commercial-scale microalgal cultivation.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3