Effect of Manure and Compost on the Phytostabilization Potential of Heavy Metals by the Halophytic Plant Wavy-Leaved Saltbush

Author:

Li Jianjian,Chang YajunORCID,AL-Huqail Arwa AbdulkreemORCID,Ding ZheliORCID,Al-Harbi Mohammad S.,Ali Esmat F.ORCID,Abeed Amany H. A.,Rekaby Saudi A.ORCID,Eissa Mamdouh A.ORCID,Ghoneim Adel M.ORCID,Tammam Suzan A.

Abstract

This study aimed to use organic fertilizers, e.g., compost and manures, and a halophytic plant [wavy-leaved saltbush (Atriplex undulata)] to remediate an agricultural soil polluted with toxic elements. Compost or manure (1% w/w) was added to a polluted soil in a pot trial. The application of the organic fertilizer, whether compost or manure, led to a significant improvement in the growth of the tested plant. From the physiological point of view, the application of organic fertilizers to polluted soil significantly increased the content of chlorophyll, carotenoid, and proline and, furthermore, led to a clear decrease in malondialdehyde (MDA) in the plant leaves. The highest significant values of organic carbon in the polluted soil (SOC) and cation exchange capacity (CEC) were found for the soil amended by compost and planted with wavy-leaved saltbush. Manure significantly reduced the soil pH to 7.52. Compost significantly decreased Zn, Cu, Cd, and Pb availability by 19, 8, 12, and 13%, respectively, compared to the control. On the other hand, manure increased Zn, Cu, Cd, and Pb availability by 8, 15, 18, and 14%, respectively. Compost and manure reduced the bioconcentration factor (BCF) and translocation factor (TF) of Cd and Pb. Compost was more effective in increasing the phytostabilization of toxic metals by wavy-leaved saltbush plants compared to manure. The results of the current study confirm that the application of non-decomposed organic fertilizers to polluted soils increases the risk of pollution of the ecosystem with toxic elements. The cultivation of contaminated soils with halophytic plants with the addition of aged organic materials, e. g., compost, is an effective strategy to reduce the spreading of toxic metals in the ecosystem, thus mitigating their introduction into the food chain.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3