Thermal Niche for Seed Germination and Species Distribution Modelling of Swietenia macrophylla King (Mahogany) under Climate Change Scenarios

Author:

Sampayo-Maldonado SalvadorORCID,Ordoñez-Salanueva Cesar A.,Mattana Efisio,Way Michael,Castillo-Lorenzo Elena,Dávila-Aranda Patricia D.,Lira-Saade Rafael,Téllez-Valdés Oswaldo,Rodriguez-Arevalo Norma I.ORCID,Ulian Tiziana,Flores-Ortíz Cesar M.

Abstract

Swietenia macrophylla is an economically important tree species propagated by seeds that lose their viability in a short time, making seed germination a key stage for the species recruitment. The objective of this study was to determine the cardinal temperatures and thermal time for seed germination of S. macrophylla; and its potential distribution under different climate change scenarios. Seeds were placed in germination chambers at constant temperatures from 5 to 45 °C and their thermal responses modelled using a thermal time approach. In addition, the potential biogeographic distribution was projected according to the Community Climate System Model version 4 (CCSM4). Germination rate reached its maximum at 37.3 ± 1.3 °C (To); seed germination decreased to near zero at 52.7 ± 2.2 °C (ceiling temperature, Tc) and at 12.8 ± 2.4 °C (base temperature, Tb). The suboptimal thermal time θ150 needed for 50% germination was ca. 190 °Cd, which in the current scenario is accumulated in 20 days. The CCSM4 model estimates an increase of the potential distribution of the species of 12.3 to 18.3% compared to the current scenario. The temperature had an important effect on the physiological processes of the seeds. With the increase in temperature, the thermal needs for germination are completed in less time, so the species will not be affected in its distribution. Although the distribution of the species may not be affected, it is crucial to generate sustainable management strategies to ensure its long-term conservation.

Funder

Newton Fund to conserve and sustainably use the native flora of Mexico

Garfield Weston Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3