Abstract
Information fusion has been a topic of immense interest owing to its applicability in various applications. This brings to the fore the need for a flexible and accurate fusion algorithm that can be versatile. The Brooks–Iyengar algorithm is one such fusion algorithm. It has since its inception found numerous applications that deal with the fusion of data from multiple sources. The uniqueness of the Brooks–Iyengar algorithm is the ease with which the data from multiple sensors in a local system can be fused and also reach consensus in a distributed system with the added capability of fault tolerance. Blockchain has found its use as a distributed ledger and has successfully supported and fueled many crypto-currencies over the years. Information fusion with regards to Blockchains is a topic of great research interest in the past couple of years. Since blockchain has no official node, the introduction of a decentralized network and a consensus algorithm is required in making the interactions and exchanges between multiple suppliers easier and thus leads to business being carried out without any hassles. In this paper, we attempt to understand and describe the deployment of multiple sensors to measure various aspects of the physical world. We discuss a novel technique of employing the Brooks–Iyengar algorithm in the design of the system that would decentralize the data source from the corresponding measurements and thus ensure the integrity of the transactions in the Blockchain. Finally, a theoretical analysis of the performance of the algorithm when used in a blockchain based decentralized environment is also discussed.
Subject
Control and Optimization,Computer Networks and Communications,Instrumentation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fog Forensics: A Comprehensive Review of Forensic Models for Fog Computing Environment;Lecture Notes in Electrical Engineering;2023-11-02
2. Blockchain Applications and Challenges in Smart grid;2021 IEEE Conference on Energy Conversion (CENCON);2021-10-25
3. Metadata-based measurements transmission verified by a Merkle Tree;Knowledge-Based Systems;2021-05
4. IoT Security;Evolution of Smart Sensing Ecosystems with Tamper Evident Security;2021