An Investigation of Various Machine and Deep Learning Techniques Applied in Automatic Fear Level Detection and Acrophobia Virtual Therapy

Author:

Bălan OanaORCID,Moise GabrielaORCID,Moldoveanu AlinORCID,Leordeanu Marius,Moldoveanu FloricaORCID

Abstract

In this paper, we investigate various machine learning classifiers used in our Virtual Reality (VR) system for treating acrophobia. The system automatically estimates fear level based on multimodal sensory data and a self-reported emotion assessment. There are two modalities of expressing fear ratings: the 2-choice scale, where 0 represents relaxation and 1 stands for fear; and the 4-choice scale, with the following correspondence: 0—relaxation, 1—low fear, 2—medium fear and 3—high fear. A set of features was extracted from the sensory signals using various metrics that quantify brain (electroencephalogram—EEG) and physiological linear and non-linear dynamics (Heart Rate—HR and Galvanic Skin Response—GSR). The novelty consists in the automatic adaptation of exposure scenario according to the subject’s affective state. We acquired data from acrophobic subjects who had undergone an in vivo pre-therapy exposure session, followed by a Virtual Reality therapy and an in vivo evaluation procedure. Various machine and deep learning classifiers were implemented and tested, with and without feature selection, in both a user-dependent and user-independent fashion. The results showed a very high cross-validation accuracy on the training set and good test accuracies, ranging from 42.5% to 89.5%. The most important features of fear level classification were GSR, HR and the values of the EEG in the beta frequency range. For determining the next exposure scenario, a dominant role was played by the target fear level, a parameter computed by taking into account the patient’s estimated fear level.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference113 articles.

1. Depression and Other Common Mental Disorders: Global Health Estimates,2017

2. What Is Fear? Types of Phobias and Their Meaningshttps://www.fearof.net/what-is-fear-types-of-phobias-and-their-meanings/

3. Phobia Statistics and Surprising Facts about Our Biggest Fearshttp://www.fearof.net/phobia-statistics-and-surprising-facts-about-our-biggest-fears/

4. Uncover the Facts Behind Our Most Common Phobias [Infographic. (2017)]https://blog.nationwide.com/common-phobias-statistics/

5. Cognitive Behavioral Therapyhttps://www.psychologytoday.com/us/basics/cognitive-behavioral-therapy

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3