Mortality/Longevity Risk-Minimization with or without Securitization

Author:

Choulli TahirORCID,Daveloose Catherine,Vanmaele MichèleORCID

Abstract

This paper addresses the risk-minimization problem, with and without mortality securitization, à la Föllmer–Sondermann for a large class of equity-linked mortality contracts when no model for the death time is specified. This framework includes situations in which the correlation between the market model and the time of death is arbitrary general, and hence leads to the case of a market model where there are two levels of information—the public information, which is generated by the financial assets, and a larger flow of information that contains additional knowledge about the death time of an insured. By enlarging the filtration, the death uncertainty and its entailed risk are fully considered without any mathematical restriction. Our key tool lies in our optional martingale representation, which states that any martingale in the large filtration stopped at the death time can be decomposed into precise orthogonal local martingales. This allows us to derive the dynamics of the value processes of the mortality/longevity securities used for the securitization, and to decompose any mortality/longevity liability into the sum of orthogonal risks by means of a risk basis. The first main contribution of this paper resides in quantifying, as explicitly as possible, the effect of mortality on the risk-minimizing strategy by determining the optimal strategy in the enlarged filtration in terms of strategies in the smaller filtration. Our second main contribution consists of finding risk-minimizing strategies with insurance securitization by investing in stocks and one (or more) mortality/longevity derivatives such as longevity bonds. This generalizes the existing literature on risk-minimization using mortality securitization in many directions.

Funder

Natural Sciences and Engineering Research Council of Canada

Agentschap voor Innovatie door Wetenschap en Technologie

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3