Author:
Lu Zhenbo,Long Zhen,Xia Jingxin,An Chengchuan
Abstract
Identifying and detecting the travel mode and pattern of individual travelers is an important problem in transportation planning and policy making. Mobile-phone Signaling Data (MSD) have numerous advantages, including wide coverage and low acquisition cost, data stability and reliability, and strong real-time performance. However, due to their noisy and temporally irregular nature, extracting mobility information such as transport modes from these data is particularly challenging. This paper establishes a travel mode identification model based on the MSD combined with residents’ travel survey data, Geographic Information System (GIS) data, and navigation data. Using the data obtained from Kunshan, China in 2017, enriched with variables on the travel mode identification, the model achieved a high accuracy of 90%. The accuracy is satisfactory for all of the transport modes other than buses. Furthermore, among the explanatory variables such as the built environment factors (e.g., the coverage rate of a bus stop) are in general more significant, in contrast with other attributes. This indicates that the land use functions are more influential on the travel mode selection as well as the level of travel demand.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献