Sustainability Assessment of Combined Cooling, Heating, and Power Systems under Carbon Emission Regulations

Author:

Chu ,Yang ,Li

Abstract

The combined cooling, heating, and power (CCHP) system, which is a sustainable distributed energy system, has attracted increasing attention due to the associated economic, environmental, and energy benefits. Currently, the enforcement of carbon emission regulations has become an increasingly concerning issue globally. In this paper, a multi-objective optimization model is established to evaluate the CCHP system under two different carbon emission regulation policies in terms of economic benefit, environmental sustainability, and energy advantage. A nonlinear programming optimization model is formulated and solved by using the particle swarm optimization (PSO) algorithm. The results from the case studies demonstrate that when considering carbon tax regulation, the cost savings of the optimal CCHP system strategy were on average 10.0%, 9.1%, 17.0%, 22.1%, and 20.9% for the office, supermarket, hotel, school, and hospital in China, respectively, compared with the conventional energy supply system. On the other hand, when considering carbon trading regulation, the optimal CCHP system strategy can lead to a 10.0%, 8.9%, 16.8%, 21.6%, and 20.5% cost-saving for the five different building categories, respectively. Furthermore, the optimal CCHP system strategy for the five buildings, i.e., an average of 39.6% carbon dioxide emission (CDE) reduction and 26.5% primary energy consumption (PEC) saving, can be achieved under carbon emission regulations.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3