Coastal High-Temporal Sea-Surface Altimetry Using the Posterior Error Estimations of Ionosphere-Free PPP and Information Fusion for Multi-GNSS Retrievals

Author:

Zhou WeiORCID,Bian Shaofeng,Liu YiORCID,Huang Liangke,Liu Lilong,Chen Cheng,Li Houpu,Zhai Guojun

Abstract

Ocean tidal variation is a key parameter for ensuring coastal safety, monitoring marine climate, and maintaining elevation datum. Recently, the ground-based global navigation satellite system reflectometry (GNSS-R) technique has been applied for regional tidal measurements, which is somewhat restricted in terms of temporal and spatial resolutions. A convenient method to improve temporal resolution of measurements is to combine multi-GNSS observations. This paper proposes a new sea-surface altimetry method using the posterior errors (PE) of dual-frequency carrier-phase signals derived from the ionosphere-free Precise Point Positioning (IF-PPP). Considering that the number of initial retrievals is obviously unsuitable for minute-level tidal measurements, both the time sliding window based on the Lomb–Scargle periodogram and a weighted cubic spline smoothing function are significant processing steps for estimating the reflector heights between the sea surface and antenna center. Measurements from two coastal GNSS stations with different tidal amplitudes are used to test the proposed method and compare it with the tide gauge and the signal-to-noise ratio (SNR) methods, respectively. The experimental results show that the multi-GNSS PE combination method can be used to estimate a minute-level sea level time series, and its root-mean-squared errors (RMSE) are about 12.5 cm. In terms of correlation, for all results, the corresponding coefficients exceed 0.97. Moreover, this combined PE method demonstrates a significant advantage in increasing temporal resolution, which is beneficial for application on high-frequency sea-level monitoring.

Funder

National Natural Science Foundation of China

National Science Foundation for Outstanding Young Scholars

Independent Project of Naval University of Engineering

Graduate Innovation Foundation for Naval University of Engineering

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3