Urban Flood-Related Remote Sensing: Research Trends, Gaps and Opportunities

Author:

Zhu WeiORCID,Cao ZheORCID,Luo PingpingORCID,Tang Zeming,Zhang Yuzhu,Hu MaochuanORCID,He Bin

Abstract

As a result of urbanization and climate change, urban areas are increasingly vulnerable to flooding, which can have devastating effects on the loss of life and property. Remote sensing technology can provide practical help for urban flood disaster management. This research presents a review of urban flood-related remote sensing to identify research trends and gaps, and reveal new research opportunities. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), the systematic literature search resulted in 347 documents classified as geography, disaster management application, and remote sensing data utilization. The main results include 1. most of the studies are located in high-income countries and territories and inland areas; 2. remote sensing for observing the environment was more popular than observing the building; 3. the most often applied disaster management activities were vulnerability assessment and risk modeling (mitigation) and rapid damage assessment (response); 4. DEM is often applied to simulate urban floods as software inputs. We suggest that future research directions include 1. coastal urban study areas in non-high-income countries/territories to help vulnerable populations; 2. understudied disaster management activities, which often need to observe the buildings in more urban areas; 3. data standardization will facilitate integration with international standard methods for assessing urban floods.

Funder

the Third Xinjiang Scientific Expedition Program

National Key R&D Program of China

China Scholarship Council

International Education Research Program of Chang’an University

Project of Ningxia Natural Science Foundation

Youth Innovation Talent Program for Guangdong Universities in 2022

China National Social Science Fund Project

General Project of Shaanxi Provincial Key R&D Program—Social Development Field

GDAS Special Project of Science and Technology Development

Guangdong Foundation for Program of Science and Technology Research

the National Natural Science Foundation of China

Asia-Pacific Network for Global Change Research APN project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3