Limb Sounders Tracking Tsunami-Induced Perturbations from the Stratosphere to the Ionosphere

Author:

Yan Xiangxiang,Yu Tao,Xia Chunliang

Abstract

In this study, we employ three types of satellite data from two different limb sounders: the FORMOSAT-3/COSMIC (F3/C) radio occultation (RO) technique and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument to study the vertical coupling of the 16-09-2015 Chile tsunami-induced perturbations from the stratosphere to the ionosphere. All three types of datasets, including temperature profiles from 10 to 55 km and 16 to 107 km, and electron density profiles from 120 to 550 km, recognized perturbations of different scales at different heights after the Chile tsunami. The vertical scales identified by the wavelet analysis are from 1–2 km, 5–9 km, and 25–50 km in the stratosphere, mesosphere, and ionosphere, respectively. Meanwhile, as a comparison and validation of the reliability, we also revisited the 11-03-2011 Tohoku earthquake/tsunami-related perturbations from the stratosphere to the ionosphere using the same data. It is believed that the two tsunamis both disturbed the whole atmosphere space, and the scale of these signals gradually increases with the increase in altitude but decreases with time. In addition, the tsunami-related ionospheric gravity wavefronts are examined by the F3/C observations. Another interesting point is that the temperature perturbations recorded by the SABER from 70–100 km altitude are found to arrive earlier than the 2015 tsunami wavefront. The findings in this study suggest that the limb-sounding technique is a useful instrument for detecting the tsunami-coupling gravity wave and benefits the tsunami warning system.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3