Abstract
Recently, deep learning methods, especially convolutional neural networks (CNNs), have achieved good performance for hyperspectral image (HSI) classification. However, due to limited training samples of HSIs and the high volume of trainable parameters in deep models, training deep CNN-based models is still a challenge. To address this issue, this study investigates contrastive learning (CL) as a pre-training strategy for HSI classification. Specifically, a supervised contrastive learning (SCL) framework, which pre-trains a feature encoder using an arbitrary number of positive and negative samples in a pair-wise optimization perspective, is proposed. Additionally, three techniques for better generalization in the case of limited training samples are explored in the proposed SCL framework. First, a spatial–spectral HSI data augmentation method, which is composed of multiscale and 3D random occlusion, is designed to generate diverse views for each HSI sample. Second, the features of the augmented views are stored in a queue during training, which enriches the positives and negatives in a mini-batch and thus leads to better convergence. Third, a multi-level similarity regularization method (MSR) combined with SCL (SCL–MSR) is proposed to regularize the similarities of the data pairs. After pre-training, a fully connected layer is combined with the pre-trained encoder to form a new network, which is then fine-tuned for final classification. The proposed methods (SCL and SCL–MSR) are evaluated on four widely used hyperspectral datasets: Indian Pines, Pavia University, Houston, and Chikusei. The experiment results show that the proposed SCL-based methods provide competitive classification accuracy compared to the state-of-the-art methods.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Contrastive Learning Method for Multi-Label Predictors on Hyperspectral Images;2023 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS);2023-10-31