An Operational Atmospheric Correction Framework for Multi-Source Medium-High-Resolution Remote Sensing Data of China

Author:

Zhang HaoORCID,Yan Dongchuan,Zhang Bing,Fu Zhengwen,Li Baipeng,Zhang Shuning

Abstract

Land surface reflectance (LSR) data form the basis of quantitatively remotely sensed applications. For accurate LSR retrieval, atmospheric correction has been investigated by many researchers and implemented in typical processing systems, including common atmospheric correction software for various types of datasets and automatic operating systems for application to certain individual data sources. In recent years, China has launched multiple medium–high-resolution satellites but has not provided standard LSR products partly because of the lack of an appropriate operational system. In this paper, a multi-source remote sensing LSR product system for medium- and high-resolution data is proposed, called the “Operational Atmospheric Correction Framework for multi-source Medium-high-resolution Remote Sensing data of China” (ACFrC). The AC algorithm, processing flow, and design of the multi-source LSR system were described in detail. A practical atmospheric correction algorithm was proposed specially for data in only the visible and near-infrared (VNIR) bands. The entire processing chain was divided into modules for multi-source data ingestion, apparent reflectance calculation, cloud and water identification, atmospheric correction, and standard LSR product generation. To date, most types of multi-source data have been tested using the ACFrC system, with reasonable results being obtained. From the preliminary results, the 313 scenes of LSR products from the GaoFen-2 (GF-2) satellite over China for the period from 2015 to 2018 were cross-compared with Landsat-8 LSR acquired on the same day, showing an overall uncertainty less than 0.112 × LSR + 0.0112. Further, the ACFrC data processing efficiency was found to be suitable for automatic operation. System improvement is ongoing and future refinements will include online cloud parallel computing functionality and services, more robust algorithms, and other radiometric processing functions.

Funder

National Natural Science Foundation of China

Hainan Provincial Department of Science and Technology

CAS Strategic Priority Research Program

Key project of Aerospace Information Research Institute, CAS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference80 articles.

1. Landsat—Earth Observation Satellites (ver. 1.1, August 2016): U.S. Geological Survey Fact Sheet 2015–3081, 2016.

2. Landsat 9. 2022.

3. Li, J., and Roy, D. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens., 2017. 9.

4. High-resolution remote sensing mapping of global land water;Liao;Sci. China Earth Sci.,2014

5. Enabling efficient, large-scale high-spatial resolution wetland mapping using satellites;McCarthy;Remote Sens. Environ.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3