Abstract
In the context of global climate change, floods have become one of the major natural disasters affecting the safety of human life, economic construction, and sustainable development. Despite significant improvements in flood risk and exposure modeling in some studies, there is still a lack of evidence on the spatiotemporal distribution patterns associated with flood risk across the globe. Meanwhile, numerous studies mostly explore flood risk distribution patterns based on specific spatial scales, ignoring to some extent the fact that flood risk has different distribution patterns on different scales. Here, on the basis of hazard–vulnerability components quantified using game theory (GT), we proposed a framework for analyzing the spatiotemporal distribution patterns of global flood risk and the influencing factors behind them on multiple scales. The results revealed that global flood risk increased during 2005–2020, with the percentages of high-risk areas being 4.3%, 4.48%, 4.6%, and 5.02%, respectively. There were 11 global risk hotspots, mainly located in areas with high population concentration, high economic density, abundant precipitation, and low elevation. On the national scale, high-risk countries were mainly concentrated in East Asia, South Asia, Central Europe, and Western Europe. In our experiment, developed countries accounted for the majority of the 20 highest risk countries in the world, with Singapore being the highest risk country and El Salvador having the highest positive risk growth rate (growing by 19.05% during 2015–2020). The findings of this study offer much-needed information and reference for academics researching flood risk under climate change.
Funder
Strategic Priority Research Program of the Chinese Academy of Sciences
the Key R&D project of Sichuan Science and Technology Department
National Flash Flood Investigation and Evaluation Project
National Key R&D Program of China
Science and Technology Project of Xizang Autonomous Region
Subject
General Earth and Planetary Sciences