Abstract
Land subsidence affects many areas of the world, posing a serious threat to human structures and infrastructures. It can be effectively monitored using ground-based and remote sensing techniques, such as the Global Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). GNSS provides high precision measurements, but in a limited number of points, and is time-consuming, while InSAR allows one to obtain a very large number of measurement points, but only in areas characterized by a high and constant reflectivity of the signal. The aim of this work is to propose an approach to combine the two techniques, overcoming the limits of each of them. The approach was applied in the Po River Delta (PRD), an area located in Northern Italy and historically affected by land subsidence. Ground-based GNSS data from three continuous stations (CGNSS) and 46 non-permanent sites (NPS) measured in 2016, 2018, and 2020, and Sentinel-1 and COSMO-SkyMed SAR data acquired from 2016 to 2020, were considered. In the first phase of the method, InSAR processing was calibrated and verified through CGNSS measurements; subsequently, the calibrated interferometric data were used to validate the GNSS measurements of the NPS. In the second phase, the datasets were integrated to provide an efficient monitoring system, extracting high-resolution deformation maps. The results showed a good agreement between the different sources of data, a high correlation between the displacement rate and the age of the emerged surfaces composed of unconsolidated fine sediments, and high land subsidence rates along the coastal area (up to 16–18 mm/year), where the most recent deposits outcrop. The proposed approach makes it possible to overcome the disadvantages of each technique by providing more complete and detailed information for a better understanding of the ongoing phenomenon.
Funder
Department of Civil, Environmental and Architectural Engineering of the Padova University
Subject
General Earth and Planetary Sciences
Reference58 articles.
1. Zhou, C., Gong, H., Chen, B., Gao, M., Cao, Q., Cao, J., Duan, L., Zuo, J., and Shi, M. Land Subsidence Response to Different Land Use Types and Water Resource Utilization in Beijing-Tianjin-Hebei, China. Remote Sens., 2020. 12.
2. Effective sea-level rise and deltas: Causes of change and human dimension implications;Ericson;Glob. Planet. Change,2006
3. Sinking deltas due to human activities;Syvitski;Nat. Geosci.,2009
4. Estimation of land subsidence in deltaic areas through differential SAR interferometry: The Po River Delta case study (Northeast Italy);Fiaschi;Int. J. Remote Sens.,2018
5. Coastline evolution of the Po River Delta (Italy) by archival multi-temporal digital photogrammetry;Fabris;Geomat. Nat. Hazards Risk,2019
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献