Where Can IMERG Provide a Better Precipitation Estimate than Interpolated Gauge Data?

Author:

Hartke Samantha H.,Wright Daniel B.

Abstract

Although rain gauges provide valuable point-based precipitation observations, gauge data is globally sparse, necessitating interpolation between often-distant measurement locations. Interpolated gauge data is subject to uncertainty just as other precipitation data sources. Previous studies have focused either on the effect of decreasing gauge density on interpolated gauge estimate performance or on the ability of gauge data to accurately assess satellite multi-sensor precipitation data as a function of gauge density. No previous work has directly compared the performance of interpolated gauge estimates and satellite precipitation data as a function of gauge density to identify the gauge density at which satellite precipitation data and interpolated estimates have similar accuracy. This study seeks to provide insight into interpolated gauge product accuracy at low gage densities using a Monte Carlo interpolation scheme at locations across the continental U.S. and Brazil. We hypothesize that the error in interpolated precipitation estimates increases drastically at low rain gauge densities and at high distances to the nearest gauge. Results show that the multisatellite precipitation product, IMERG, has comparable performance in precipitation detection to interpolated gauge data at very low gauge densities (i.e., less than 2 gauges/10,000 km2) and that IMERG often outperforms interpolated data when the distance to the nearest gauge used during interpolation is greater than 80–100 km. However, there does not appear to be a consistent relationship between this performance ‘break point’ and the geographical variables of elevation, distance to coast, and annual precipitation.

Funder

NASA Earth and Space Science Fellowship Program

Wisconsin Distinguished Graduate Fellowship

NASA Precipitation Measurement Mission

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3