Author:
Hartke Samantha H.,Wright Daniel B.
Abstract
Although rain gauges provide valuable point-based precipitation observations, gauge data is globally sparse, necessitating interpolation between often-distant measurement locations. Interpolated gauge data is subject to uncertainty just as other precipitation data sources. Previous studies have focused either on the effect of decreasing gauge density on interpolated gauge estimate performance or on the ability of gauge data to accurately assess satellite multi-sensor precipitation data as a function of gauge density. No previous work has directly compared the performance of interpolated gauge estimates and satellite precipitation data as a function of gauge density to identify the gauge density at which satellite precipitation data and interpolated estimates have similar accuracy. This study seeks to provide insight into interpolated gauge product accuracy at low gage densities using a Monte Carlo interpolation scheme at locations across the continental U.S. and Brazil. We hypothesize that the error in interpolated precipitation estimates increases drastically at low rain gauge densities and at high distances to the nearest gauge. Results show that the multisatellite precipitation product, IMERG, has comparable performance in precipitation detection to interpolated gauge data at very low gauge densities (i.e., less than 2 gauges/10,000 km2) and that IMERG often outperforms interpolated data when the distance to the nearest gauge used during interpolation is greater than 80–100 km. However, there does not appear to be a consistent relationship between this performance ‘break point’ and the geographical variables of elevation, distance to coast, and annual precipitation.
Funder
NASA Earth and Space Science Fellowship Program
Wisconsin Distinguished Graduate Fellowship
NASA Precipitation Measurement Mission
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献