Training of Convolutional Neural Networks for Image Classification with Fully Decoupled Extended Kalman Filter

Author:

Gaytan Armando1,Begovich-Mendoza Ofelia1,Arana-Daniel Nancy2ORCID

Affiliation:

1. Unidad Guadalajara, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Zapopan 45019, Jalisco, Mexico

2. Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico

Abstract

First-order algorithms have long dominated the training of deep neural networks, excelling in tasks like image classification and natural language processing. Now there is a compelling opportunity to explore alternatives that could outperform current state-of-the-art results. From the estimation theory, the Extended Kalman Filter (EKF) arose as a viable alternative and has shown advantages over backpropagation methods. Current computational advances offer the opportunity to review algorithms derived from the EKF, almost excluded from the training of convolutional neural networks. This article revisits an approach of the EKF with decoupling and it brings the Fully Decoupled Extended Kalman Filter (FDEKF) for training convolutional neural networks in image classification tasks. The FDEKF is a second-order algorithm with some advantages over the first-order algorithms, so it can lead to faster convergence and higher accuracy, due to a higher probability of finding the global optimum. In this research, experiments are conducted on well-known datasets that include Fashion, Sports, and Handwritten Digits images. The FDEKF shows faster convergence compared to other algorithms such as the popular Adam optimizer, the sKAdam algorithm, and the reduced extended Kalman filter. Finally, motivated by the finding of the highest accuracy of FDEKF with images of natural scenes, we show its effectiveness in another experiment focused on outdoor terrain recognition.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3