Determination of the Pressure Dependence of Raman Mode for an Alumina–Glass Pair in Hertzian Contact

Author:

Delbé KarlORCID,De Sousa Cyril,Grizet François,Paris Jean-YvesORCID,Yahiaoui MalikORCID

Abstract

Optimising the performance of materials requires, among other things, the characterisation of residual stresses during the design stage. Raman spectroscopy offers access to these residual stresses at the micrometre scale when this inelastic light scattering is active in these materials. In this case, the relationship between the Raman mode shift and the pressure must be known. High-pressure cells with diamond anvils or bending instruments coupled to Raman spectrometers are habitually used to determine this relationship. In this article, we propose a new method that involves a Hertzian contact to obtain this relationship. A device that compresses an alumina ball against a transparent glass plane is connected to a Raman spectrometer. Under these conditions, the contact pressure can be as high as 1.5 GPa. The contact between the glass plane and the ball is observed through a diaphragm. Several hundred Raman spectra are recorded depending on the contact diameter. The spectral profiles obtained represent the shift in the Raman modes of alumina and glass along the contact diameter. Hertz’s theory accurately describes the pressure profile as a function of position for elastic materials. Therefore, the contact diameter can be measured by fitting the spectral profile with a function identical to the Hertz profile. We then deduce the maximum pressure. Next, the calculated pressure profile along the contact diameter is correlated with the spectral profile. We obtain a pressure dependence of the Raman mode with a coefficient equal to 2.07 cm−1/GPa for the Eg modes of alumina at 417 cm−1, which is in good agreement with the literature. In the case of glass, we refine the measurement of the Q3 mode shift at 1096 cm−1 in the studied pressure range compared to the literature. We find a coefficient of 4.31 cm−1/GPa. This work on static contacts opens up promising prospects for investigations into dynamic contacts in tribology.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3