Experimental Study on Properties of Modified City Wall Soil

Author:

Pan Wei,Yue Jianwei,Yang Xue,Wang ZifaORCID

Abstract

Due to the special geographical location, climatic characteristics, special soil properties and the flood zone of the Yellow River in Kaifeng, the groundwater level in the lower reaches of the river basin is high and contains much salt. The matrix suction and surface free energy of the Kaifeng city wall earthen site changed under capillary action, resulting in cracking, peeling and efflorescence to varying degrees. In order to reduce the deterioration of the Kaifeng city wall caused by environmental erosion, a select lime with excellent mechanical properties and waterproof methanesiliconic acid sodium salt with excellent water resistance were chosen to reinforce the earthen sites. In this paper, 0%, 3%, 5% and 7% lime, and 0%, 1%, 2% and 3% waterproof materials were selected to determine four types of imitation site soil with 16 different mix proportion samples. Further, samples with different mixing ratios were subjected to direct shear, a disintegration test, and a microscopic scanning electron microscope test. The results show that under different normal stresses, with the increase in waterproof material content, the growth rate of shear strength of imitation site soil ranges from 1.82% to 10.81%. With the increase in lime content, the shear strength of imitation site soil increases rapidly, up to 38.16%. Both materials can improve the shear strength of the soil site. Under reinforcement with the two materials, the cohesive force of the imitation site soil can be improved at a maximum rate of 59.23%, and the internal friction angle changes in the range of 36.72°–41.61°. Compared with the sample without waterproof material, the mass water absorption rate of the sample with waterproof material decreases in the range of 2.76–27.77, and with the increase in waterproof material, the mass water absorption rate of the sample gradually decreases. The chemical reaction products of the waterproof materials and lime can play a filling role in silty clay; filling micro-pores and micro-cracks between soil particles.

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

1. Study on the improvement of hydrological properties of Kaifeng imitation site soil;Yue;Eng. Sci. Technol.,2020

2. Analytical study of rammed earth materials excavated from the Zhengzhou Mall site;Liu;Herit. Conserv. Archaeol. Sci.,2016

3. Experimental Study on the Ontological Reinforcement and Protection of the Ruguan Kiln Site in Qingliang Temple, Baofeng, Henan;Zhang;Herit. Conserv. Archaeol. Sci.,2014

4. Preservation Status of Kaifeng City Wall in Qing Dynasty and Suggestions for Conservation;Xu;Chin. Foreign Archit.,2019

5. Material Weathering and Structural Damage in Historic Adobe Constructions in Spain: Preliminary Results of a Quantitative Approach;Mileto;Stud. Conserv.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3