Environmental Pressures on Top-Down and Bottom-Up Forces in Coastal Ecosystems

Author:

Blum Michael J.ORCID

Abstract

Global change is manifesting new and potent pressures that may determine the relative influence of top-down and bottom-up forces on the productivity of plants that undergird coastal ecosystems. Here, I present a meta-analysis conducted to assess how herbivory, nitrogen enrichment, and elevated salinity influence plant productivity according to the salinity regimes of coastal ecosystems. An examination of 99 studies representing 288 effect sizes across 76 different plant species revealed that elevated salinity negatively affected productivity across all environments, but particularly in freshwater ecosystems. Nitrogen enrichment, on the other hand, positively affected productivity. In agreement with the plant stress hypothesis, herbivory had the greatest negative impact in saline habitats. This trend, however, appears to reverse with nitrogen enrichment, with maximum losses to herbivory occurring in brackish habitats. These findings demonstrate that multiple stressors can yield complex, and sometimes opposite outcomes to those arising from individual stressors. This study also suggests that trophic interactions will likely shift as coastal ecosystems continue to experience nutrient enrichment and sea level rise.

Funder

Tulane University

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3