Design of a Deflection Switched Reluctance Motor Control System Based on a Flexible Neural Network

Author:

Li ZhengORCID,Wei Xiaopeng,Wang Jinsong,Liu LiboORCID,Du Shenhui,Guo Xiaoqiang,Sun Hexu

Abstract

Deflection switched reluctance motors (DSRM) are prone to chattering at low speeds, which always affects the output efficiency of the DSRM and the mechanical loss of the motor. Combining the characteristics of a traditional reluctance motor with the strong nonlinear and high coupling of the DSRM, a control system for a DSRM based on a flexible neural network (FNN) is proposed in this paper. Based on the better robustness and fault tolerance of fuzzy PI control, the given speed signal is adjusted and converted into a torque control signal. As a result, the FNN control module possesses the strong self-learning ability and adaptive adjustment ability necessary to obtain the control voltage signal. Through simulations and experiments, it was verified that the control system can run stably on DSRM and shows good dynamic performance and anti-interference ability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

1. Elimination of mutual flux effect on rotor position estimation of switched reluctance motor drives considering magnetic saturation;IEEE Trans. Power Electron.,2015

2. Variations in overall developed torque of a switched reluctance motor with airgap nonuniformity;IEEE Trans. Magn.,2005

3. Fault-tolerant operation of a novel dual-channel switched reluctance motor using two 3-phase standard inverters;IEEE Trans. Appl. Supercond.,2018

4. Modeling design optimization and applications of switched reluctance machines—A review;IEEE Trans. Ind. Appl.,2019

5. A fast analytical model for an integrated switched reluctance starter/generator;IEEE Trans. Energy Convers.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3