Determination of Film Cooling Effectiveness and Heat Transfer Coefficient Simultaneously on a Flat Plate

Author:

Zhang Mingjie

Abstract

In this paper, flat plate film cooling with two rows of compound angle cylindrical film cooling holes was investigated. A data processing method was evaluated which could determine the film cooling effectiveness and heat transfer coefficient simultaneously from the transient wall temperature data. The method was based on solving an inverse problem of the one-dimensional transient heat conduction equation. To evaluate the performance of the method, wall temperature data were obtained using the known film cooling effectiveness and heat transfer coefficient data as the convection boundary condition. Then, the method was applied to calculate the film cooling effectiveness and heat transfer coefficient based on the wall temperature data. Different blowing ratios, heat transfer coefficients, mainstream temperatures, and material thermal conductivities were investigated. In general, the data and calculation were in good agreement. It was found that the error decreased when the heat transfer coefficient increased and the material thermal conductivity decreased. The percentage error of the span-wise averaged film cooling effectiveness was mainly between 0% and 10%, and the percentage error of the span-wise averaged heat transfer coefficient was mainly between 0% and 4%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Creep behavior of different elliptical film cooling holes in complex temperature fields;International Journal of Pressure Vessels and Piping;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3