Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China

Author:

Li Jingcui,Wan JifangORCID,Liu Hangming,Jurado Maria JoseORCID,He Yuxian,Yuan Guangjie,Xia Yan

Abstract

Using underground space to store natural gas resources is an important means by which to solve emergency peak shaving of natural gas. Rock salt gas storage is widely recognized due to its high-efficiency peak shaving and environmental protection. Damage and stress concentrations inside the cavern injection during withdrawal operations and throughout the storage facility life have always been among the most important safety issues. Therefore, accurate evaluation of the stability of rock salt gas storage during operation is of paramount significance to field management and safety control. In this study, we used the finite element numerical analysis software Flac3D to numerically simulate large displacement deformations of the cavern wall during gas storage—in addition to the distribution of the plastic zone of the rock around the cavern and the surface settlement—under different working conditions. We found that the maximum surface settlement value occurred near the upper part of the cavern. The surface settlement value increased as a function of creep time, but this increase leveled off, that is, a convergence trend was observed. The value was relatively small and, therefore, had little impact on the surface. The application of gas pressure inhibited the growth of the plastic zone, but on the whole, the plastic zone’s range increased proportionally to creep time. For the 20-year creep condition, the deformation value of the cavern’s surrounding rock was large. Combined with the distribution of the plastic zone, we believe that the cavern’s surrounding rock is unstable; thus, corresponding reinforcement measures must be taken.

Funder

CNPC scientific research and technology development project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3