Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method

Author:

Lateko Andi A. H.ORCID,Yang Hong-TzerORCID,Huang Chao-MingORCID

Abstract

One of the most critical aspects of integrating renewable energy sources into the smart grid is photovoltaic (PV) power generation forecasting. This ensemble forecasting technique combines several forecasting models to increase the forecasting accuracy of the individual models. This study proposes a regression-based ensemble method for day-ahead PV power forecasting. The general framework consists of three steps: model training, creating the optimal set of weights, and testing the model. In step 1, a Random forest (RF) with different parameters is used for a single forecasting method. Five RF models (RF1, RF2, RF3, RF4, and RF5) and a support vector machine (SVM) for classification are established. The hyperparameters for the regression-based method involve learners (linear regression (LR) or support vector regression (SVR)), regularization (least absolute shrinkage and selection operator (LASSO) or Ridge), and a penalty coefficient for regularization (λ). Bayesian optimization is performed to find the optimal value of these three hyperparameters based on the minimum function. The optimal set of weights is obtained in step 2 and each set of weights contains five weight coefficients and a bias. In the final step, the weather forecasting data for the target day is used as input for the five RF models and the average daily weather forecasting data is also used as input for the SVM classification model. The SVM output selects the weather conditions, and the corresponding set of weight coefficients from step 2 is combined with the output from each RF model to obtain the final forecasting results. The stacking recurrent neural network (RNN) is used as a benchmark ensemble method for comparison. Historical PV power data for a PV site in Zhangbin Industrial Area, Taiwan, with a 2000 kWp capacity is used to test the methodology. The results for the single best RF model, the stacking RNN, and the proposed method are compared in terms of the mean relative error (MRE), the mean absolute error (MAE), and the coefficient of determination (R2) to verify the proposed method. The results for the MRE show that the proposed method outperforms the best RF method by 20% and the benchmark method by 2%.

Funder

Ministry of Science and Technology Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3