Author:
Yamasaki Haruhiko,Wakimoto Hiroyuki,Kamimura Takeshi,Hattori Kazuhiro,Nekså Petter,Yamaguchi Hiroshi
Abstract
The dry ice sublimation process of carbon dioxide (CO2) is a unique, environmentally friendly technology that can achieve a temperature of −56 °C or lower, which is a triple point of CO2 in CO2 refrigeration systems. In this study, a cyclone separator-evaporator was proposed to separate dry ice particles in an evaporator. As an initial step before introducing the cyclone separator-evaporator into an actual refrigeration system, a prototype cyclone separator-evaporator was constructed to visualize dry ice particles in a separation chamber. A high-speed camera was used to visualize the non-uniform flow of dry ice particles that repeatedly coalescence and collision in a swirl section. Consequently, the dry ice particle size and the circumferential and axial velocities of dry ice were measured. The results show that the equivalent diameter of the most abundant dry ice particles in the cyclone separation chamber is 2.0 mm. As the inner diameter of the separation section decreases, dry ice particles coalesce and grow from an equivalent diameter of 4 mm to a maximum of 40 mm. In addition, the comparison of the experimental and simulation results shows that the drag force due to CO2 gas flow is dominant in the circumferential velocity of dry ice particles.
Funder
The Research Council of Norway
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献