Comprehensive Performance Evaluation of a Dual-Function Active Solar Thermal Façade System Based on Energy, Economic and Environmental Analysis in China

Author:

Li Rui,Cui Guomin

Abstract

Promoting the development and utilization of solar energy is a practical way to alleviate the energy crisis and achieve the goal of carbon neutrality. Recently, interest has arisen in the dual-functional active solar thermal façade (ASTF) system that produces hot water throughout the whole year and reduces cooling and heating load as a function of the building façade. Here, a mathematical model of the ASTF system is built and validated by the experimental data, and the annual performance of the ASTF system in representative cities in three climate regions is evaluated. The results are that compared with the common solar water system, the ASTF system adds passive energy savings, which accounts for 5.8%, 7.2% and 11.4% of the total primary energy savings of the system for Shanghai, Beijing and Lanzhou. Compared with the traditional wall, the ASTF saves 16.4% and 23.0% of cooling energy consumption and 102.3% and 92.4% of heating energy consumption for Shanghai and Beijing, respectively. Additionally, it saves 74.7% of heating energy consumption for Lanzhou. Lastly, the impact of the design parameters and operation parameters of the system are investigated, respectively. This study demonstrates a viable path to promoting cost-effective active solar thermal façades in different climates, and the results can be beneficial to further research.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. International Energy Outlook 2013,2014

2. Managing carbon emissions in China through building energy efficiency

3. China building energy consumption research Report 2020;Build. Energy Effic.,2021

4. Building Energy Efficiency;Wang,2004

5. Preliminary investigation on photo-thermal performance of a novel embedded building integrated solar evacuated tube collector with compound parabolic concentrator

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3