Abstract
Capturing particulate matter (PM) is an important issue due to the protection of human health and the quality of their life. This paper describes the innovation of an affordable particulate matter capture device for small heat sources to reduce particulate matter emissions. The design of two investigated variants of the device is based on the principle of a tubular electrostatic precipitator with one charging electrode placed in the chimney. The design of the precipitators is aimed at increasing the area of the collecting electrodes by elements dividing precipitation space, with a simultaneously increased number of charging electrodes. The influence of the elements’ application on the pressure drop and the gas flow velocity through the devices is analyzed by computational fluid dynamics (CFD). The work is further focused on the economic evaluation of precipitators and design adjustments for lower energy consumption. The achieved results show the right direction of efforts to improve the equipment designed to capture PM emissions.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献