Abstract
The use of air conditioning in buildings to provide a comfortable environment accounts for up to 75% of the electricity consumed in Kuwait for the hot season from April through to the end of October. The widespread adoption of air conditioning systems in buildings has resulted in an increased demand for electricity. This has led to an increased peak load demand that has resulted in a larger carbon footprint and placed the electricity grid under significant strain. Heat-driven air conditioning systems that use solar energy are now emerging as alternatives to electricity-driven conventional refrigerated air conditioners. These systems are more energy-efficient, with lower carbon emissions while also ensuring better indoor air quality and comfort when optimally designed. Among the heat-driven air conditioning systems, the desiccant cooling system is among the systems with the most potential. This paper presents a numerical investigation of the design optimization of solar desiccant cooling systems for Kuwait’s climate. The numerical model of the system is developed using validated components. The various design configurations analysed include a solar heating system and regeneration air for the desiccant wheel. It is found that an evacuated tube solar collector in conjunction with return air from the building to regenerate the desiccant wheel provides the best results.
Funder
Kuwait Foundation for the Advancement of Sciences
Central Queensland University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference24 articles.
1. Solar Cooling in Australia: Future of Air-Conditioning?;Kohlenbach,2010
2. Indoor Environmental Quality of Air Conditioned Residential Buildings in Extreme Dry Desert Climate
3. NATHERS—Peak Load Performance Module Research;Saman,2009
4. ASHRAE Handbook–Fundamentals,2009
5. The effects of indoor air quality on performance and productivity
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献