Author:
Yang Cheng,Ying Kanfeng,Yang Fan,Peng Huanghu,Chen Zezhou
Abstract
Microwave treatment is an emerging technique for biomass tar elimination. The electric and thermal fields of the microwave reactor are the key to high elimination efficiency and energy utilization. In this work, we simulated the electric and thermal fields of a microwave reactor with various parameters including irradiation feed position, microwave power, silicon carbide length and flow velocity. Results show that the irradiation feed position that locates 5 mm vertically to the central plane can obtain the highest electric intensity and silicon carbide temperature (ca. 1100 K) after wave absorbing. Both the electric and thermal fields are strengthened when microwave power is increased. Extending the silicon carbide bed length will decrease the bed temperature and heating rate. A high flow velocity leads to non-uniform temperature distribution of the silicon carbide. For the purpose of achieving a high microwave energy utilization and uniform bed temperature, suitable irradiation feed position (zi = 5 mm), high microwave power (P = 1000 W), short silicon carbide bed length (lSiC = 100 mm) and low flow velocity (v = 0.02 m/s) are preferred, but the chemical kinetics of biomass tar elimination should also be considered in the practical application.
Funder
Huzhou Science and Technology Bureau
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献