Graphene and Nanoclay as Processing Aid Agents: A Study on Rheological Behavior in Polystyrene

Author:

Genoyer Julie12,Helal Emna12,Gutierrez Giovanna2,Moghimian Nima2ORCID,David Eric1ORCID,Demarquette Nicole R.1

Affiliation:

1. Ecole de Technologie Supérieure, Department of Mechanical Engineering, Montreal, QC H3C 1K3, Canada

2. NanoXplore Inc., Montreal, QC H4R 2P2, Canada

Abstract

The effectiveness of layered particles as processing aid agents in molten polystyrene was studied. Three graphene grades and two clays of different lateral size were selected for this purpose. The morphologies of the composites were observed using scanning electron microscopy. Steady shear measurements were carried out and the Carreau–Yasuda model with yield stress was applied to the experimental results. A decrease in viscosity was observed at 2 wt.% of particle content for almost all composites. The most efficient particle for reducing viscosity was found to be graphene in a loose agglomerated configuration. Graphene and clay particles with similar dispersion states had a similar effect on the viscosity, inducing a decrease by 29% and 22%, respectively, suggesting comparable efficiency as processing aid agents. The observed decrease in viscosity is attributed to the phenomenon of superlubricity, which is a lubricating mechanism that is closely linked to the atomic structure of the particles.

Funder

NanoXplore Inc.

Natural Sciences and Engineering Research Council

PRIMA Quebec

Fonds de Recherche du Québec-Nature et Technologies

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3