Inhibitory Effect of Quercetin on Oxidative Endogen Enzymes: A Focus on Putative Binding Modes

Author:

Olla Stefania1ORCID,Siguri Chiara1,Fais Antonella2ORCID,Era Benedetta2ORCID,Fantini Massimo Claudio3ORCID,Di Petrillo Amalia3

Affiliation:

1. Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy

2. Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy

3. Department of Medical Science and Public Health, University of Cagliari, 09042 Monserrato, Italy

Abstract

Oxidative stress is defined as an imbalance between the production of free radicals and reactive oxygen species (ROS) and the ability of the body to neutralize them by anti-oxidant defense systems. Cells can produce ROS during physiological processes, but excessive ROS can lead to non-specific and irreversible damage to biological molecules, such as DNA, lipids, and proteins. Mitochondria mainly produce endogenous ROS during both physiological and pathological conditions. Enzymes like nicotinamide adenine dinucleotide phosphate oxidase (NOX), xanthine oxidase (XO), lipoxygenase (LOX), myeloperoxidase (MPO), and monoamine oxidase (MAO) contribute to this process. The body has enzymatic and non-enzymatic defense systems to neutralize ROS. The intake of bioactive phenols, like quercetin (Que), can protect against pro-oxidative damage by quenching ROS through a non-enzymatic system. In this study, we evaluate the ability of Que to target endogenous oxidant enzymes involved in ROS production and explore the mechanisms of action underlying its anti-oxidant properties. Que can act as a free radical scavenger by donating electrons through the negative charges in its phenolic and ketone groups. Additionally, it can effectively inhibit the activity of several endogenous oxidative enzymes by binding them with high affinity and specificity. Que had the best molecular docking results with XO, followed by MAO-A, 5-LOX, NOX, and MPO. Que’s binding to these enzymes was confirmed by subsequent molecular dynamics, revealing different stability phases depending on the enzyme bound. The 500 ns simulation showed a net evolution of binding for NOX and MPO. These findings suggest that Que has potential as a natural therapy for diseases related to oxidative stress.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference66 articles.

1. Protective Mechanisms of Quercetin against Myocardial Ischemia Reperfusion Injury;Zhang;Front. Physiol.,2020

2. Pharmacological Activity of Quercetin: An Updated Review;Wang;Evid. Based Complement. Altern. Med.,2022

3. Quercetin and Its Derivates as Antiviral Potentials: A Comprehensive Review;Fais;Phytother. Res.,2022

4. Quercetin and Its Role in Biological Functions: An Updated Review;Kim;EXCLI J.,2018

5. Consumption of Flavonoid-Rich Foods and Increased Plasma Antioxidant Capacity in Humans: Cause, Consequence, or Epiphenomenon?;Lotito;Free Radic. Biol. Med.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3