Investigation of the Membrane Localization and Interaction of Selected Flavonoids by NMR and FTIR Spectroscopy

Author:

Kapral-Piotrowska Justyna1,Strawa Jakub W.2ORCID,Jakimiuk Katarzyna2ORCID,Wiater Adrian3ORCID,Tomczyk Michał2ORCID,Gruszecki Wiesław I.4,Pawlikowska-Pawlęga Bożena1

Affiliation:

1. Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland

2. Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland

3. Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland

4. Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, ul. Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland

Abstract

In this report, we discuss the effects of undescribed flavone derivatives, HZ4 and SP9, newly isolated from the aerial parts of Hottonia palustris L. and Scleranthus perennis L. on membranes. Interaction of flavonoids with lipid bilayers is important for medicinal applications. The experiments were performed with FTIR and NMR techniques on liposomes prepared from DPPC (dipalmitoylphosphatidylcholine) and EYPC (egg yolk phosphatidylcholine). The data showed that the examined polyphenols incorporate into the polar head group region of DPPC phospholipids at both 25 °C and 45 °C. At the lower temperature, a slight effect in the spectral region of the ester carbonyl group is observed. In contrast, at 45 °C, both compounds bring about the changes in the spectral regions attributed to antisymmetric and symmetric stretching vibrations of CH2 and CH3 moieties. Similarly, as in DPPC lipids, the tested compounds interact with the fingerprint region of the polar head groups of the EYPC lipids and cause its reorganization. The outcomes obtained by NMR analyses confirmed the localization of both flavonoids in the polar heads zone. Unraveled effects of HZ4 and SP9 in respect to lipid bilayers can partly determine their biological activities and are crucial for their usability in medicine as disease-preventing phytochemicals.

Funder

Medical University of Białystok

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3