Proteome Analysis of Alpine Merino Sheep Skin Reveals New Insights into the Mechanisms Involved in Regulating Wool Fiber Diameter

Author:

Yue Lin123,Lu Zengkui123ORCID,Guo Tingting123,Liu Jianbin123ORCID,Yang Bohui123,Yuan Chao123

Affiliation:

1. Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China

2. Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China

3. Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China

Abstract

Wool fiber is a textile material that is highly valued based on its diameter, which is crucial in determining its economic value. To analyze the molecular mechanisms regulating wool fiber diameter, we used a Data-independent acquisition-based quantitative proteomics approach to analyze the skin proteome of Alpine Merino sheep with four fiber diameter ranges. From three contrasts of defined groups, we identified 275, 229, and 190 differentially expressed proteins (DEPs). Further analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that pathways associated with cyclic adenosine monophosphate and peroxisome proliferator-activated receptor signaling are relevant to wool fiber diameter. Using the K-means method, we investigated the DEP expression patterns across wool diameter ranges. Using weighted gene co-expression network analysis, we identified seven key proteins (CIDEA, CRYM, MLX, TPST2, GPD1, GOPC, and CAMK2G) that may be involved in regulating wool fiber diameter. Our findings provide a theoretical foundation for identifying DEPs and pathways associated with wool fiber diameter in Alpine Merino sheep to enable a better understanding of the molecular mechanisms underlying the genetic regulation of wool fiber quality.

Funder

National Key R&D Program of China

China Agriculture Research System

Chinese Academy of Agricultural Sciences of Technology Innovation Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3