Steady-State and Time-Resolved Fluorescence Study of Selected Tryptophan-Containing Peptides in an AOT Reverse Micelle Environment

Author:

Gałęcki Krystian1ORCID,Kowalska-Baron Agnieszka1,Nowak Katarzyna E.2,Gajda Anna3,Kolesińska Beata3ORCID

Affiliation:

1. Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego St. 2/22, 90-537 Lodz, Poland

2. Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland

3. Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego St. 114, 90-924 Lodz, Poland

Abstract

The aim of this study was to demonstrate the utility of time-resolved fluorescence spectroscopy in the detection of subtle changes in the local microenvironment of a tryptophan chromophore in a confined and crowded medium of AOT reverse micelles, which mimic biological membranes and cell compartmentalization. For this purpose, fluorescence properties of L-tryptophan and several newly synthesized tryptophan-containing peptides in buffer and in an AOT reverse micelle medium were determined. It was shown that insertion of tryptophan and its short di- and tripeptides inside micelles led to evident changes in both the steady-state emission spectra and in fluorescence decay kinetics. The observed differences in spectral characteristics, such as a blue shift in the emission maxima, changes in the average fluorescence lifetime, and the appearance of environmental-dependent fluorescent species, showed the utility of time-resolved fluorescence spectroscopy as a sensitive tool for detecting subtle conformational modifications in tryptophan and its peptides induced by changes in polarity, viscosity, and specific interactions between chromophores and water molecules/polar groups/ions that occur inside reverse micelles.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3