Identification and Functional Analysis of Drought-Responsive Long Noncoding RNAs in Maize Roots

Author:

Tang Xin12,Li Qimeng12,Feng Xiaoju12,Yang Bo12,Zhong Xiu12,Zhou Yang12,Wang Qi12,Mao Yan12,Xie Wubin12,Liu Tianhong12,Tang Qi12,Guo Wei12,Wu Fengkai12,Feng Xuanjun12ORCID,Wang Qingjun12,Lu Yanli12,Xu Jie12

Affiliation:

1. Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China

2. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China

Abstract

Long noncoding RNAs (lncRNAs) are transcripts with lengths of more than 200 nt and limited protein-coding potential. They were found to play important roles in plant stress responses. In this study, the maize drought-tolerant inbred line AC7643 and drought-sensitive inbred line AC7729/TZSRW, as well as their recombinant inbred lines (RILs) were selected to identify drought-responsive lncRNAs in roots. Compared with non-responsive lncRNAs, drought-responsive lncRNAs had different sequence characteristics in length of genes and number of exons. The ratio of down-regulated lncRNAs induced by drought was significantly higher than that of coding genes; and lncRNAs were more widespread expressed in recombination sites in the RILs. Additionally, by integration of the modifications of DNA 5-methylcytidine (5mC), histones, and RNA N6-methyladenosine (m6A), it was found that the enrichment of histone modifications associated with transcriptional activation in the genes generated lncRNAs was lower that coding genes. The lncRNAs-mRNAs co-expression network, containing 15,340 coding genes and 953 lncRNAs, was constructed to investigate the molecular functions of lncRNAs. There are 13 modules found to be associated with survival rate under drought. We found nine SNPs located in lncRNAs among the modules associated with plant survival under drought. In conclusion, we revealed the characteristics of lncRNAs responding to drought in maize roots based on multiomics studies. These findings enrich our understanding of lncRNAs under drought and shed light on the complex regulatory networks that are orchestrated by the noncoding RNAs in response to drought stress.

Funder

National Natural Science Foundation of China

Key Research Program of the Department of Science and technology of Sichuan

The Major Science and Technology Application Demonstration Project of Chengdu, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3