A Comparative Evaluation of Desoximetasone Cream and Ointment Formulations Using Experiments and In Silico Modeling

Author:

Matharoo Namrata S.12ORCID,Garimella Harsha T.3,German Carrie3,Przekwas Andrzej J.3,Michniak-Kohn Bozena12

Affiliation:

1. Center for Dermal Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

2. Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

3. CFD Research Corporation, Huntsville, AL 35806, USA

Abstract

The administration of therapeutic drugs through dermal routes, such as creams and ointments, has emerged as an increasingly popular alternative to traditional delivery methods, such as tablets and injections. In the context of drug development, it is crucial to identify the optimal doses and delivery routes that ensure successful outcomes. Physiologically based pharmacokinetic (PBPK) models have been proposed to simulate drug delivery and optimize drug formulations, but the calibration of these models is challenging due to the multitude of variables involved and limited experimental data. One significant research gap that this article addresses is the need for more efficient and accurate methods for calibrating PBPK models for dermal drug delivery. This manuscript presents a novel approach and an integrated dermal drug delivery model to address this gap that leverages virtual in vitro release (IVRT) and permeation (IVPT) testing data to optimize mechanistic models. The proposed approach was demonstrated through a study involving Desoximetasone cream and ointment formulations, where the release kinetics and permeation profiles of Desoximetasone were determined experimentally, and a computational model was created to simulate the results. The experimental studies showed that, even though the cumulative permeation of Desoximetasone at the end of the permeation study was comparable, there was a significant difference seen in the lag time in the permeation of Desoximetasone between the cream and ointment. Additionally, there was a significant difference seen in the amount of Desoximetasone permeated through human cadaver skin at early time points when the cream and ointment were compared. The computational model was optimized and validated, suggesting that this approach has the potential to bridge the existing research gap by improving the accuracy and efficiency of drug development processes. The model results show a good fit between the experimental data and model predictions. During the model optimization process, it became evident that there was variability in both the permeability and the partition coefficient within the stratum corneum. This variability had a significant and noteworthy influence on the overall performance of the model, especially when it came to its capacity to differentiate between cream and ointment formulations. Leveraging virtual models significantly aids the comprehension of drug release and permeation, mitigating the demanding data requirements. The use of virtual IVRT and IVPT data can accelerate the calibration of PBPK models, streamline the selection of the appropriate doses, and optimize drug delivery. Moreover, this novel approach could potentially reduce the time and resources involved in drug development, thus making it more cost-effective and efficient.

Funder

National Institutes of Health/U.S. Food and Administration under the Small Business Innovation Research (SBIR).

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3