Biochemical Responses to the Long-Term Impact of Copper Sulfate (CuSO4) in Tobacco Plants

Author:

Tugbaeva Anastasia S.1ORCID,Ermoshin Alexander A.1ORCID,Kiseleva Irina S.1ORCID

Affiliation:

1. Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620002, Russia

Abstract

Metabolic changes under stress are often studied in short-term experiments, revealing rapid responses in gene expression, enzyme activity, and the amount of antioxidants. In a long-term experiment, it is possible to identify adaptive changes in both primary and secondary metabolism. In this study, we characterized the physiological state of tobacco plants and assessed the amount and spectrum of phenolic compounds and the lignification of axial organs under excess copper stress in a long-term experiment (40 days). Plants were treated with 100 and 300 μM CuSO4, as well as a control (Knop solution). Copper accumulation, the size and anatomical structure of organs, stress markers, and the activity of antioxidant enzymes were studied. Lignin content was determined with the cysteine-assisted sulfuric method (CASA), and the metabolite profile and phenolic spectrum were determined with UHPLC-MS and thin-layer chromatography (TLC). Cu2+ mainly accumulated in the roots and, to a lesser extent, in the shoots. Copper sulfate (100 μM) slightly stimulated stem and leaf growth. A higher concentration (300 μM) caused oxidative stress; H2O2 content, superoxide dismutase (SOD), and guaiacol peroxidase (GPOX) activity increased in roots, and malondialdehyde (MDA) increased in all organs. The deposition of lignin increased in the roots and stems compared with the control. The content of free phenolics, which could be used as substrates for lignification, declined. The proportions of ferulic, cinnamic, and p-coumaric acids in the hydrolysate of bound phenolics were higher, and they tended toward additional lignification. The metabolic profile changed in both roots and stems at both concentrations, and changed in leaves only at a concentration of 300 μM. Thus, changes in the phenolic spectrum and the enhanced lignification of cell walls in the metaxylem of axial (root and stem) organs in tobacco can be considered important metabolic responses to stress caused by excess CuSO4.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3