Calcium Signaling Consequences of RyR2-S4938F Mutation Expressed in Human iPSC-Derived Cardiomyocytes

Author:

Toth Noemi1,Zhang Xiao-Hua1,Zamaro Alexandra1ORCID,Morad Martin12

Affiliation:

1. Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA

2. Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA

Abstract

Type-2 ryanodine receptor (RyR2) is the major Ca2+ release channel of the cardiac sarcoplasmic reticulum (SR) that controls the rhythm and strength of the heartbeat, but its malfunction may generate severe arrhythmia leading to sudden cardiac death or heart failure. S4938F-RyR2 mutation in the carboxyl-terminal was expressed in human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) using CRISPR/Cas9 gene-editing technique. Ca2+ signaling and electrophysiological properties of beating cardiomyocytes carrying the mutation were studied using total internal reflection fluorescence microscopy (TIRF) and patch clamp technique. In mutant cells, L-type Ca2+ currents (ICa), measured either by depolarizations to zero mV or repolarizations from +100 mV to –50 mV, and their activated Ca2+ transients were significantly smaller, despite their larger caffeine-triggered Ca2+ release signals compared to wild type (WT) cells, suggesting ICa-induced Ca2+ release (CICR) was compromised. The larger SR Ca2+ content of S4938F-RyR2 cells may underlie the higher frequency of spontaneously occurring Ca2+ sparks and Ca2+ transients and their arrhythmogenic phenotype.

Funder

National Institutes of Health

Jennifer Friedman Hillis Foundation

SC Blue Cross and Blue Shield Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3