Affiliation:
1. Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
2. IGFs & Metabolic Endocrinology Group, Learning & Research Building, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK
Abstract
Insulin receptor substrate-2 (IRS-2), a substrate of the insulin-like growth factor (IGF)-I receptor, is highly expressed in the prostate cancer cell line, PC3. We recently demonstrated that extracellular signal-regulated kinase (Erk1/2), a kinase downstream of IGF signaling, is activated in PC3 cells under serum starvation, and this activation can be inhibited by IRS-2 knockdown. Here, we observed that adding an IGF-I-neutralizing antibody to the culture medium inhibited the activation of Erk1/2. Suppression of Erk1/2 in IRS-2 knockdown cells was restored by the addition of a PC3 serum-free conditioned medium. In contrast, the IRS-2-silenced PC3 conditioned medium could not restore Erk1/2 activation, suggesting that IRS-2 promotes the secretion of proteins that activate the IGF signaling pathway. Furthermore, gelatin zymography analysis of the conditioned medium showed that matrix metalloproteinase-9 (MMP-9) was secreted extracellularly in an IRS-2 dependent manner when PC3 was cultured under serum starvation conditions. Moreover, MMP-9 knockdown suppressed Erk1/2 activation, DNA synthesis, and migratory activity. The IRS-2 levels were positively correlated with Gleason grade in human prostate cancer tissues. These data suggest that highly expressed IRS-2 activates IGF signaling by enabling the secretion of MMP-9, which is associated with hyperproliferation and malignancy of prostate cancer cell line, PC3.
Funder
Japan Society for the Promotion of Science
Bio-oriented Technology Research Advancement Institution
China Scholarship Council
NIHR
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献