Raman Spectroscopy as a Potential Adjunct of Thyroid Nodule Evaluation: A Systematic Review

Author:

Kujdowicz Monika12,Januś Dominika34ORCID,Taczanowska-Niemczuk Anna56,Lankosz Marek W.7ORCID,Adamek Dariusz1

Affiliation:

1. Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland

2. Department of Pathology, University Children Hospital in Krakow, 30-663 Krakow, Poland

3. Department of Pediatric and Adolescent Endocrinology, Institute of Pediatrics, Jagiellonian University Medical College, 31-531 Krakow, Poland

4. Department of Pediatric and Adolescent Endocrinology, University Children Hospital in Krakow, 30-663 Krakow, Poland

5. Department of Pediatric Surgery, Institute of Pediatrics, Jagiellonian University Medical College, 31-531 Krakow, Poland

6. Department of Pediatric Surgery, University Children Hospital in Krakow, 30-663 Krakow, Poland

7. Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

The incidence of thyroid nodules (TNs) is estimated at 36.5% and 23% in females and males, respectively. A single thyroid nodule is usually detected during ultrasound assessment in patients with symptoms of thyroid dysfunction or neck mass. TNs are classified as benign tumours (non-malignant hyperplasia), benign neoplasms (e.g., adenoma, a non-invasive follicular tumour with papillary nuclear features) or malignant carcinomas (follicular cell-derived or C-cell derived). The differential diagnosis is based on fine-needle aspiration biopsies and cytological assessment (which is burdened with the bias of subjectivity). Raman spectroscopy (RS) is a laser-based, semiquantitative technique which shows for oscillations of many chemical groups in one label-free measurement. RS, through the assessment of chemical content, gives insight into tissue state which, in turn, allows for the differentiation of disease on the basis of spectral characteristics. The purpose of this study was to report if RS could be useful in the differential diagnosis of TN. The Web of Science, PubMed, and Scopus were searched from the beginning of the databases up to the end of June 2023. Two investigators independently screened key data using the terms “Raman spectroscopy” and “thyroid”. From the 4046 records found initially, we identified 19 studies addressing the differential diagnosis of TNs applying the RS technique. The lasers used included 532, 633, 785, 830, and 1064 nm lines. The thyroid RS investigations were performed at the cellular and/or tissue level, as well as in serum samples. The accuracy of papillary thyroid carcinoma detection is approx. 90%. Furthermore, medullary, and follicular thyroid carcinoma can be detected with up to 100% accuracy. These results might be biased with low numbers of cases in some research and overfitting of models as well as the reference method. The main biochemical changes one can observe in malignancies are as follows: increase of protein, amino acids (like phenylalanine, tyrosine, and tryptophan), and nucleic acid content in comparison with non-malignant TNs. Herein, we present a review of the literature on the application of RS in the differential diagnosis of TNs. This technique seems to have powerful application potential in thyroid tumour diagnosis.

Funder

Jagiellonian University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3