Expression Pattern of Trace Amine-Associated Receptors during Differentiation of Human Pluripotent Stem Cells to Dopaminergic Neurons

Author:

Katolikova Nataliia V.1ORCID,Vaganova Anastasia N.12ORCID,Shafranskaya Daria D.3,Efimova Evgeniya V.1,Malashicheva Anna B.4,Gainetdinov Raul R.12

Affiliation:

1. Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia

2. Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia

3. Center for Algorithmic Biotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia

4. Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia

Abstract

Trace amine-associated receptors (TAARs), which were discovered only in 2001, are known to be involved in the regulation of a spectrum of neuronal processes and may play a role in the pathogenesis of a number of neuropsychiatric diseases, such as schizophrenia and others. We have previously shown that TAARs also have interconnections with the regulation of neurogenesis and, in particular, with the neurogenesis of dopamine neurons, but the exact mechanisms of this are still unknown. In our work we analyzed the expression of TAARs (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8 and TAAR9) in cells from the human substantia nigra and ventral tegmental areas and in human pluripotent stem cells at consecutive stages of their differentiation to dopaminergic neurons, using RNA sequencing data from open databases, and TaqMan PCR data from the differentiation of human induced pluripotent stem cells in vitro. Detectable levels of TAARs expression were found in cells at the pluripotent stages, and the dynamic of their expression had a trend of increasing with the differentiation and maturation of dopamine neurons. The expression of several TAAR types (particularly TAAR5) was also found in human dopaminergic neuron-enriched zones in the midbrain. This is the first evidence of TAARs expression during neuronal differentiation, which can help to approach an understanding of the role of TAARs in neurogenesis.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3